Implicit Differentiation

Lecture 22 Section 2.6

Robb T. Koether

Hampden-Sydney College

Mon, Feb 27, 2017

Announcement

Announcement

• Test #2 is this Friday, March 3.

Announcement

Announcement

- Test #2 is this Friday, March 3.
- It will cover Sections 2.1 2.5.

Announcement

Announcement

- Test #2 is this Friday, March 3.
- It will cover Sections 2.1 2.5.
- Be there.

Objectives

Objectives

- Use implicit differentiation to find rates of change.
- Find the equation of the tangent line at a point.

Practice

- (a) The derivative y'.
- (b) The equation of the tangent line at the given point(s).

Practice

- (a) The derivative y'.
- (b) The equation of the tangent line at the given point(s).

1.
$$x^2y + xy^2 + 2x = 8$$
 at $(1, 2)$.

Practice

- (a) The derivative y'.
- (b) The equation of the tangent line at the given point(s).
- 1. $x^2y + xy^2 + 2x = 8$ at (1, 2).
- 2. $x^2 + x = y^2 + y$ at (2, -3).

Practice

- (a) The derivative y'.
- (b) The equation of the tangent line at the given point(s).

1.
$$x^2y + xy^2 + 2x = 8$$
 at $(1, 2)$.

2.
$$x^2 + x = y^2 + y$$
 at $(2, -3)$.

3.
$$\frac{x}{y+1} + \frac{y^2}{x-1} = \frac{xy}{3}$$
 at (4,3) or (4,2) or (0,0).